3.48 \(\int \frac{\cot (c+d x)}{a+a \sin (c+d x)} \, dx\)

Optimal. Leaf size=32 \[ \frac{\log (\sin (c+d x))}{a d}-\frac{\log (\sin (c+d x)+1)}{a d} \]

[Out]

Log[Sin[c + d*x]]/(a*d) - Log[1 + Sin[c + d*x]]/(a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0390786, antiderivative size = 32, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.21, Rules used = {2707, 36, 29, 31} \[ \frac{\log (\sin (c+d x))}{a d}-\frac{\log (\sin (c+d x)+1)}{a d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]/(a + a*Sin[c + d*x]),x]

[Out]

Log[Sin[c + d*x]]/(a*d) - Log[1 + Sin[c + d*x]]/(a*d)

Rule 2707

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*tan[(e_.) + (f_.)*(x_)]^(p_.), x_Symbol] :> Dist[1/f, Subst[I
nt[(x^p*(a + x)^(m - (p + 1)/2))/(a - x)^((p + 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& EqQ[a^2 - b^2, 0] && IntegerQ[(p + 1)/2]

Rule 36

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x), x], x] -
Dist[d/(b*c - a*d), Int[1/(c + d*x), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{\cot (c+d x)}{a+a \sin (c+d x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{x (a+x)} \, dx,x,a \sin (c+d x)\right )}{d}\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{x} \, dx,x,a \sin (c+d x)\right )}{a d}-\frac{\operatorname{Subst}\left (\int \frac{1}{a+x} \, dx,x,a \sin (c+d x)\right )}{a d}\\ &=\frac{\log (\sin (c+d x))}{a d}-\frac{\log (1+\sin (c+d x))}{a d}\\ \end{align*}

Mathematica [A]  time = 0.0193949, size = 32, normalized size = 1. \[ \frac{\log (\sin (c+d x))}{a d}-\frac{\log (\sin (c+d x)+1)}{a d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]/(a + a*Sin[c + d*x]),x]

[Out]

Log[Sin[c + d*x]]/(a*d) - Log[1 + Sin[c + d*x]]/(a*d)

________________________________________________________________________________________

Maple [A]  time = 0.023, size = 33, normalized size = 1. \begin{align*}{\frac{\ln \left ( \sin \left ( dx+c \right ) \right ) }{da}}-{\frac{\ln \left ( 1+\sin \left ( dx+c \right ) \right ) }{da}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)/(a+a*sin(d*x+c)),x)

[Out]

ln(sin(d*x+c))/a/d-ln(1+sin(d*x+c))/a/d

________________________________________________________________________________________

Maxima [A]  time = 1.04724, size = 42, normalized size = 1.31 \begin{align*} -\frac{\frac{\log \left (\sin \left (d x + c\right ) + 1\right )}{a} - \frac{\log \left (\sin \left (d x + c\right )\right )}{a}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

-(log(sin(d*x + c) + 1)/a - log(sin(d*x + c))/a)/d

________________________________________________________________________________________

Fricas [A]  time = 1.40674, size = 74, normalized size = 2.31 \begin{align*} \frac{\log \left (\frac{1}{2} \, \sin \left (d x + c\right )\right ) - \log \left (\sin \left (d x + c\right ) + 1\right )}{a d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

(log(1/2*sin(d*x + c)) - log(sin(d*x + c) + 1))/(a*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{\cot{\left (c + d x \right )}}{\sin{\left (c + d x \right )} + 1}\, dx}{a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)/(a+a*sin(d*x+c)),x)

[Out]

Integral(cot(c + d*x)/(sin(c + d*x) + 1), x)/a

________________________________________________________________________________________

Giac [A]  time = 1.2827, size = 45, normalized size = 1.41 \begin{align*} -\frac{\frac{\log \left ({\left | \sin \left (d x + c\right ) + 1 \right |}\right )}{a} - \frac{\log \left ({\left | \sin \left (d x + c\right ) \right |}\right )}{a}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

-(log(abs(sin(d*x + c) + 1))/a - log(abs(sin(d*x + c)))/a)/d